1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
// Copyright 2018 foundationdb-rs developers, https://github.com/Clikengo/foundationdb-rs/graphs/contributors
// Copyright 2013-2018 Apple, Inc and the FoundationDB project authors.
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

//! Implementations of the FDBTransaction C API
//!
//! https://apple.github.io/foundationdb/api-c.html#transaction

use foundationdb_sys as fdb_sys;
use std::fmt;
use std::ops::Deref;
use std::ptr::NonNull;

use crate::future::*;
use crate::keyselector::*;
use crate::options;
use crate::{error, FdbError, FdbResult};

use futures::{
    future, future::Either, stream, Future, FutureExt, Stream, TryFutureExt, TryStreamExt,
};

/// A committed transaction.
#[derive(Debug)]
#[repr(transparent)]
pub struct TransactionCommitted {
    tr: Transaction,
}

impl TransactionCommitted {
    /// Retrieves the database version number at which a given transaction was committed.
    ///
    /// Read-only transactions do not modify the database when committed and will have a committed
    /// version of -1. Keep in mind that a transaction which reads keys and then sets them to their
    /// current values may be optimized to a read-only transaction.
    ///
    /// Note that database versions are not necessarily unique to a given transaction and so cannot
    /// be used to determine in what order two transactions completed. The only use for this
    /// function is to manually enforce causal consistency when calling `set_read_version()` on
    /// another subsequent transaction.
    ///
    /// Most applications will not call this function.
    pub fn committed_version(&self) -> FdbResult<i64> {
        let mut version: i64 = 0;
        error::eval(unsafe {
            fdb_sys::fdb_transaction_get_committed_version(self.tr.inner.as_ptr(), &mut version)
        })?;
        Ok(version)
    }

    /// Reset the transaction to its initial state.
    ///
    /// This will not affect previously committed data.
    ///
    /// This is similar to dropping the transaction and creating a new one.
    pub fn reset(mut self) -> Transaction {
        self.tr.reset();
        self.tr
    }
}
impl From<TransactionCommitted> for Transaction {
    fn from(tc: TransactionCommitted) -> Transaction {
        tc.reset()
    }
}

/// A failed to commit transaction.
pub struct TransactionCommitError {
    tr: Transaction,
    err: FdbError,
}

impl TransactionCommitError {
    /// Implements the recommended retry and backoff behavior for a transaction. This function knows
    /// which of the error codes generated by other `Transaction` functions represent temporary
    /// error conditions and which represent application errors that should be handled by the
    /// application. It also implements an exponential backoff strategy to avoid swamping the
    /// database cluster with excessive retries when there is a high level of conflict between
    /// transactions.
    ///
    /// You should not call this method most of the times and use `Database::transact` which
    /// implements a retry loop strategy for you.
    pub fn on_error(self) -> impl Future<Output = FdbResult<Transaction>> {
        FdbFuture::<()>::new(unsafe {
            fdb_sys::fdb_transaction_on_error(self.tr.inner.as_ptr(), self.err.code())
        })
        .map_ok(|()| self.tr)
    }

    /// Reset the transaction to its initial state.
    ///
    /// This is similar to dropping the transaction and creating a new one.
    pub fn reset(mut self) -> Transaction {
        self.tr.reset();
        self.tr
    }
}

impl Deref for TransactionCommitError {
    type Target = FdbError;
    fn deref(&self) -> &FdbError {
        &self.err
    }
}

impl From<TransactionCommitError> for FdbError {
    fn from(tce: TransactionCommitError) -> FdbError {
        tce.err
    }
}

impl fmt::Debug for TransactionCommitError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "TransactionCommitError({})", self.err)
    }
}

impl fmt::Display for TransactionCommitError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.err.fmt(f)
    }
}

/// The result of `Transaction::Commit`
type TransactionResult = Result<TransactionCommitted, TransactionCommitError>;

/// A cancelled transaction
#[derive(Debug)]
#[repr(transparent)]
pub struct TransactionCancelled {
    tr: Transaction,
}
impl TransactionCancelled {
    /// Reset the transaction to its initial state.
    ///
    /// This is similar to dropping the transaction and creating a new one.
    pub fn reset(mut self) -> Transaction {
        self.tr.reset();
        self.tr
    }
}
impl From<TransactionCancelled> for Transaction {
    fn from(tc: TransactionCancelled) -> Transaction {
        tc.reset()
    }
}

/// In FoundationDB, a transaction is a mutable snapshot of a database.
///
/// All read and write operations on a transaction see and modify an otherwise-unchanging version of the database and only change the underlying database if and when the transaction is committed. Read operations do see the effects of previous write operations on the same transaction. Committing a transaction usually succeeds in the absence of conflicts.
///
/// Applications must provide error handling and an appropriate retry loop around the application code for a transaction. See the documentation for [fdb_transaction_on_error()](https://apple.github.io/foundationdb/api-c.html#transaction).
///
/// Transactions group operations into a unit with the properties of atomicity, isolation, and durability. Transactions also provide the ability to maintain an application’s invariants or integrity constraints, supporting the property of consistency. Together these properties are known as ACID.
///
/// Transactions are also causally consistent: once a transaction has been successfully committed, all subsequently created transactions will see the modifications made by it.
#[derive(Debug)]
pub struct Transaction {
    // Order of fields should not be changed, because Rust drops field top-to-bottom, and
    // transaction should be dropped before cluster.
    inner: NonNull<fdb_sys::FDBTransaction>,
}
unsafe impl Send for Transaction {}
unsafe impl Sync for Transaction {}

/// Converts Rust `bool` into `fdb_sys::fdb_bool_t`
#[inline]
fn fdb_bool(v: bool) -> fdb_sys::fdb_bool_t {
    if v {
        1
    } else {
        0
    }
}
#[inline]
fn fdb_len(len: usize, context: &'static str) -> std::os::raw::c_int {
    assert!(
        len <= i32::max_value() as usize,
        "{}.len() > i32::max_value()",
        context
    );
    len as i32
}
#[inline]
fn fdb_iteration(iteration: usize) -> std::os::raw::c_int {
    if iteration > i32::max_value() as usize {
        0 // this will cause client_invalid_operation
    } else {
        iteration as i32
    }
}
#[inline]
fn fdb_limit(v: usize) -> std::os::raw::c_int {
    if v > i32::max_value() as usize {
        i32::max_value()
    } else {
        v as i32
    }
}

/// `RangeOption` represents a query parameters for range scan query.
///
/// You can construct `RangeOption` easily:
///
/// ```
/// use foundationdb::RangeOption;
///
/// let opt = RangeOption::from((b"begin".as_ref(), b"end".as_ref()));
/// let opt: RangeOption = (b"begin".as_ref()..b"end".as_ref()).into();
/// let opt = RangeOption {
///     limit: Some(10),
///     ..RangeOption::from((b"begin".as_ref(), b"end".as_ref()))
/// };
/// ```
#[derive(Debug, Clone)]
pub struct RangeOption<'a> {
    /// The beginning of the range.
    pub begin: KeySelector<'a>,
    /// The end of the range.
    pub end: KeySelector<'a>,
    /// If non-zero, indicates the maximum number of key-value pairs to return.
    pub limit: Option<usize>,
    /// If non-zero, indicates a (soft) cap on the combined number of bytes of keys and values to
    /// return for each item.
    pub target_bytes: usize,
    /// One of the options::StreamingMode values indicating how the caller would like the data in
    /// the range returned.
    pub mode: options::StreamingMode,
    /// If true, key-value pairs will be returned in reverse lexicographical order beginning at
    /// the end of the range.
    pub reverse: bool,
    #[doc(hidden)]
    pub __non_exhaustive: std::marker::PhantomData<()>,
}

impl<'a> RangeOption<'a> {
    /// Reverses the range direction.
    pub fn rev(mut self) -> Self {
        self.reverse = !self.reverse;
        self
    }

    pub fn next_range(mut self, kvs: &FdbValues) -> Option<Self> {
        if !kvs.more() {
            return None;
        }

        let last = kvs.last()?;
        let last_key = last.key();

        if let Some(limit) = self.limit.as_mut() {
            *limit = limit.saturating_sub(kvs.len());
            if *limit == 0 {
                return None;
            }
        }

        if self.reverse {
            self.end.make_first_greater_or_equal(last_key);
        } else {
            self.begin.make_first_greater_than(last_key);
        }
        Some(self)
    }
}

impl<'a> Default for RangeOption<'a> {
    fn default() -> Self {
        Self {
            begin: KeySelector::first_greater_or_equal([].as_ref()),
            end: KeySelector::first_greater_or_equal([].as_ref()),
            limit: None,
            target_bytes: 0,
            mode: options::StreamingMode::Iterator,
            reverse: false,
            __non_exhaustive: std::marker::PhantomData,
        }
    }
}

impl<'a> From<(KeySelector<'a>, KeySelector<'a>)> for RangeOption<'a> {
    fn from((begin, end): (KeySelector<'a>, KeySelector<'a>)) -> Self {
        Self {
            begin,
            end,
            ..Self::default()
        }
    }
}
impl From<(Vec<u8>, Vec<u8>)> for RangeOption<'static> {
    fn from((begin, end): (Vec<u8>, Vec<u8>)) -> Self {
        Self {
            begin: KeySelector::first_greater_or_equal(begin),
            end: KeySelector::first_greater_or_equal(end),
            ..Self::default()
        }
    }
}
impl<'a> From<(&'a [u8], &'a [u8])> for RangeOption<'a> {
    fn from((begin, end): (&'a [u8], &'a [u8])) -> Self {
        Self {
            begin: KeySelector::first_greater_or_equal(begin),
            end: KeySelector::first_greater_or_equal(end),
            ..Self::default()
        }
    }
}

impl<'a> Into<RangeOption<'a>> for std::ops::Range<KeySelector<'a>> {
    fn into(self) -> RangeOption<'a> {
        RangeOption::from((self.start, self.end))
    }
}
impl<'a> Into<RangeOption<'a>> for std::ops::Range<&'a [u8]> {
    fn into(self) -> RangeOption<'a> {
        RangeOption::from((self.start, self.end))
    }
}
impl Into<RangeOption<'static>> for std::ops::Range<Vec<u8>> {
    fn into(self) -> RangeOption<'static> {
        RangeOption::from((self.start, self.end))
    }
}
impl<'a> Into<RangeOption<'a>> for std::ops::RangeInclusive<&'a [u8]> {
    fn into(self) -> RangeOption<'a> {
        let (start, end) = self.into_inner();
        (KeySelector::first_greater_or_equal(start)..KeySelector::first_greater_than(end)).into()
    }
}
impl Into<RangeOption<'static>> for std::ops::RangeInclusive<Vec<u8>> {
    fn into(self) -> RangeOption<'static> {
        let (start, end) = self.into_inner();
        (KeySelector::first_greater_or_equal(start)..KeySelector::first_greater_than(end)).into()
    }
}

impl Transaction {
    pub(crate) fn new(inner: NonNull<fdb_sys::FDBTransaction>) -> Self {
        Self { inner }
    }

    /// Called to set an option on an FDBTransaction.
    pub fn set_option(&self, opt: options::TransactionOption) -> FdbResult<()> {
        unsafe { opt.apply(self.inner.as_ptr()) }
    }

    /// Modify the database snapshot represented by transaction to change the given
    /// key to have the given value.
    ///
    /// If the given key was not previously present in the database it is inserted.
    /// The modification affects the actual database only if transaction is later
    /// committed with `Transaction::commit`.
    ///
    /// # Arguments
    ///
    /// * `key` - the name of the key to be inserted into the database.
    /// * `value` - the value to be inserted into the database
    pub fn set(&self, key: &[u8], value: &[u8]) {
        unsafe {
            fdb_sys::fdb_transaction_set(
                self.inner.as_ptr(),
                key.as_ptr(),
                fdb_len(key.len(), "key"),
                value.as_ptr(),
                fdb_len(value.len(), "value"),
            )
        }
    }

    /// Modify the database snapshot represented by transaction to remove the given key from the
    /// database.
    ///
    /// If the key was not previously present in the database, there is no effect. The modification
    /// affects the actual database only if transaction is later committed with
    /// `Transaction::commit`.
    ///
    /// # Arguments
    ///
    /// * `key` - the name of the key to be removed from the database.
    pub fn clear(&self, key: &[u8]) {
        unsafe {
            fdb_sys::fdb_transaction_clear(
                self.inner.as_ptr(),
                key.as_ptr(),
                fdb_len(key.len(), "key"),
            )
        }
    }

    /// Reads a value from the database snapshot represented by transaction.
    ///
    /// Returns an FDBFuture which will be set to the value of key in the database if there is any.
    ///
    /// # Arguments
    ///
    /// * `key` - the name of the key to be looked up in the database
    /// * `snapshot` - `true` if this is a [snapshot read](https://apple.github.io/foundationdb/api-c.html#snapshots)
    pub fn get(
        &self,
        key: &[u8],
        snapshot: bool,
    ) -> impl Future<Output = FdbResult<Option<FdbSlice>>> + Send + Sync + Unpin {
        FdbFuture::new(unsafe {
            fdb_sys::fdb_transaction_get(
                self.inner.as_ptr(),
                key.as_ptr(),
                fdb_len(key.len(), "key"),
                fdb_bool(snapshot),
            )
        })
    }

    /// Modify the database snapshot represented by transaction to perform the operation indicated
    /// by operationType with operand param to the value stored by the given key.
    ///
    /// An atomic operation is a single database command that carries out several logical steps:
    /// reading the value of a key, performing a transformation on that value, and writing the
    /// result. Different atomic operations perform different transformations. Like other database
    /// operations, an atomic operation is used within a transaction; however, its use within a
    /// transaction will not cause the transaction to conflict.
    ///
    /// Atomic operations do not expose the current value of the key to the client but simply send
    /// the database the transformation to apply. In regard to conflict checking, an atomic
    /// operation is equivalent to a write without a read. It can only cause other transactions
    /// performing reads of the key to conflict.
    ///
    /// By combining these logical steps into a single, read-free operation, FoundationDB can
    /// guarantee that the transaction will not conflict due to the operation. This makes atomic
    /// operations ideal for operating on keys that are frequently modified. A common example is
    /// the use of a key-value pair as a counter.
    ///
    /// # Warning
    ///
    /// If a transaction uses both an atomic operation and a strictly serializable read on the same
    /// key, the benefits of using the atomic operation (for both conflict checking and performance)
    /// are lost.
    pub fn atomic_op(&self, key: &[u8], param: &[u8], op_type: options::MutationType) {
        unsafe {
            fdb_sys::fdb_transaction_atomic_op(
                self.inner.as_ptr(),
                key.as_ptr(),
                fdb_len(key.len(), "key"),
                param.as_ptr(),
                fdb_len(param.len(), "param"),
                op_type.code(),
            )
        }
    }

    /// Resolves a key selector against the keys in the database snapshot represented by
    /// transaction.
    ///
    /// Returns an FDBFuture which will be set to the key in the database matching the key
    /// selector.
    ///
    /// # Arguments
    ///
    /// * `selector`: the key selector
    /// * `snapshot`: `true` if this is a [snapshot read](https://apple.github.io/foundationdb/api-c.html#snapshots)
    pub fn get_key(
        &self,
        selector: &KeySelector,
        snapshot: bool,
    ) -> impl Future<Output = FdbResult<FdbSlice>> + Send + Sync + Unpin {
        let key = selector.key();
        FdbFuture::new(unsafe {
            fdb_sys::fdb_transaction_get_key(
                self.inner.as_ptr(),
                key.as_ptr(),
                fdb_len(key.len(), "key"),
                fdb_bool(selector.or_equal()),
                selector.offset(),
                fdb_bool(snapshot),
            )
        })
    }

    /// Reads all key-value pairs in the database snapshot represented by transaction (potentially
    /// limited by limit, target_bytes, or mode) which have a key lexicographically greater than or
    /// equal to the key resolved by the begin key selector and lexicographically less than the key
    /// resolved by the end key selector.
    ///
    /// Returns a stream of KeyValue slices.
    ///
    /// This method is a little more efficient than `get_ranges_keyvalues` but a little harder to
    /// use.
    ///
    /// # Arguments
    ///
    /// * `opt`: the range, limit, target_bytes and mode
    /// * `snapshot`: `true` if this is a [snapshot read](https://apple.github.io/foundationdb/api-c.html#snapshots)
    pub fn get_ranges<'a>(
        &'a self,
        opt: RangeOption<'a>,
        snapshot: bool,
    ) -> impl Stream<Item = FdbResult<FdbValues>> + Send + Sync + Unpin + 'a {
        stream::unfold((1, Some(opt)), move |(iteration, maybe_opt)| {
            if let Some(opt) = maybe_opt {
                Either::Left(self.get_range(&opt, iteration as usize, snapshot).map(
                    move |maybe_values| {
                        let next_opt = match &maybe_values {
                            Ok(values) => opt.next_range(values),
                            Err(..) => None,
                        };
                        Some((maybe_values, (iteration + 1, next_opt)))
                    },
                ))
            } else {
                Either::Right(future::ready(None))
            }
        })
    }

    /// Reads all key-value pairs in the database snapshot represented by transaction (potentially
    /// limited by limit, target_bytes, or mode) which have a key lexicographically greater than or
    /// equal to the key resolved by the begin key selector and lexicographically less than the key
    /// resolved by the end key selector.
    ///
    /// Returns a stream of KeyValue.
    ///
    /// # Arguments
    ///
    /// * `opt`: the range, limit, target_bytes and mode
    /// * `snapshot`: `true` if this is a [snapshot read](https://apple.github.io/foundationdb/api-c.html#snapshots)
    pub fn get_ranges_keyvalues<'a>(
        &'a self,
        opt: RangeOption<'a>,
        snapshot: bool,
    ) -> impl Stream<Item = FdbResult<FdbValue>> + Unpin + 'a {
        self.get_ranges(opt, snapshot)
            .map_ok(|values| stream::iter(values.into_iter().map(Ok)))
            .try_flatten()
    }

    /// Reads all key-value pairs in the database snapshot represented by transaction (potentially
    /// limited by limit, target_bytes, or mode) which have a key lexicographically greater than or
    /// equal to the key resolved by the begin key selector and lexicographically less than the key
    /// resolved by the end key selector.
    ///
    /// # Arguments
    ///
    /// * `opt`: the range, limit, target_bytes and mode
    /// * `iteration`: If opt.mode is Iterator, this parameter should start at 1 and be incremented
    ///   by 1 for each successive call while reading this range. In all other cases it is ignored.
    /// * `snapshot`: `true` if this is a [snapshot read](https://apple.github.io/foundationdb/api-c.html#snapshots)
    pub fn get_range(
        &self,
        opt: &RangeOption,
        iteration: usize,
        snapshot: bool,
    ) -> impl Future<Output = FdbResult<FdbValues>> + Send + Sync + Unpin {
        let begin = &opt.begin;
        let end = &opt.end;
        let key_begin = begin.key();
        let key_end = end.key();

        FdbFuture::new(unsafe {
            fdb_sys::fdb_transaction_get_range(
                self.inner.as_ptr(),
                key_begin.as_ptr(),
                fdb_len(key_begin.len(), "key_begin"),
                fdb_bool(begin.or_equal()),
                begin.offset(),
                key_end.as_ptr(),
                fdb_len(key_end.len(), "key_end"),
                fdb_bool(end.or_equal()),
                end.offset(),
                fdb_limit(opt.limit.unwrap_or(0)),
                fdb_limit(opt.target_bytes),
                opt.mode.code(),
                fdb_iteration(iteration),
                fdb_bool(snapshot),
                fdb_bool(opt.reverse),
            )
        })
    }
    /// Modify the database snapshot represented by transaction to remove all keys (if any) which
    /// are lexicographically greater than or equal to the given begin key and lexicographically
    /// less than the given end_key.
    ///
    /// The modification affects the actual database only if transaction is later committed with
    /// `Transaction::commit`.
    pub fn clear_range(&self, begin: &[u8], end: &[u8]) {
        unsafe {
            fdb_sys::fdb_transaction_clear_range(
                self.inner.as_ptr(),
                begin.as_ptr(),
                fdb_len(begin.len(), "begin"),
                end.as_ptr(),
                fdb_len(end.len(), "end"),
            )
        }
    }

    /// Attempts to commit the sets and clears previously applied to the database snapshot
    /// represented by transaction to the actual database.
    ///
    /// The commit may or may not succeed – in particular, if a conflicting transaction previously
    /// committed, then the commit must fail in order to preserve transactional isolation. If the
    /// commit does succeed, the transaction is durably committed to the database and all
    /// subsequently started transactions will observe its effects.
    ///
    /// It is not necessary to commit a read-only transaction – you can simply drop it.
    ///
    /// Callers will usually want to retry a transaction if the commit or a another method on the
    /// transaction returns a retryable error (see `on_error` and/or `Database::transact`).
    ///
    /// As with other client/server databases, in some failure scenarios a client may be unable to
    /// determine whether a transaction succeeded. In these cases, `Transaction::commit` will return
    /// an error and `is_maybe_committed()` will returns true on that error. The `on_error` function
    /// treats this error as retryable, so retry loops that don’t check for `is_maybe_committed()`
    /// could execute the transaction twice. In these cases, you must consider the idempotence of
    /// the transaction. For more information, see [Transactions with unknown results](https://apple.github.io/foundationdb/developer-guide.html#developer-guide-unknown-results).
    ///
    /// Normally, commit will wait for outstanding reads to return. However, if those reads were
    /// snapshot reads or the transaction option for disabling “read-your-writes” has been invoked,
    /// any outstanding reads will immediately return errors.
    pub fn commit(self) -> impl Future<Output = TransactionResult> + Send + Sync + Unpin {
        FdbFuture::<()>::new(unsafe { fdb_sys::fdb_transaction_commit(self.inner.as_ptr()) }).map(
            move |r| match r {
                Ok(()) => Ok(TransactionCommitted { tr: self }),
                Err(err) => Err(TransactionCommitError { tr: self, err }),
            },
        )
    }

    /// Implements the recommended retry and backoff behavior for a transaction. This function knows
    /// which of the error codes generated by other `Transaction` functions represent temporary
    /// error conditions and which represent application errors that should be handled by the
    /// application. It also implements an exponential backoff strategy to avoid swamping the
    /// database cluster with excessive retries when there is a high level of conflict between
    /// transactions.
    ///
    /// It is not necessary to call `reset()` when handling an error with `on_error()` since the
    /// transaction has already been reset.
    ///
    /// You should not call this method most of the times and use `Database::transact` which
    /// implements a retry loop strategy for you.
    pub fn on_error(
        self,
        err: FdbError,
    ) -> impl Future<Output = FdbResult<Transaction>> + Send + Sync + Unpin {
        FdbFuture::<()>::new(unsafe {
            fdb_sys::fdb_transaction_on_error(self.inner.as_ptr(), err.code())
        })
        .map_ok(|()| self)
    }

    /// Cancels the transaction. All pending or future uses of the transaction will return a
    /// transaction_cancelled error. The transaction can be used again after it is reset.
    pub fn cancel(self) -> TransactionCancelled {
        unsafe { fdb_sys::fdb_transaction_cancel(self.inner.as_ptr()) };
        TransactionCancelled { tr: self }
    }

    /// Returns a list of public network addresses as strings, one for each of the storage servers
    /// responsible for storing key_name and its associated value.
    pub fn get_addresses_for_key(
        &self,
        key: &[u8],
    ) -> impl Future<Output = FdbResult<FdbAddresses>> + Send + Sync + Unpin {
        FdbFuture::new(unsafe {
            fdb_sys::fdb_transaction_get_addresses_for_key(
                self.inner.as_ptr(),
                key.as_ptr(),
                fdb_len(key.len(), "key"),
            )
        })
    }

    /// A watch's behavior is relative to the transaction that created it. A watch will report a
    /// change in relation to the key’s value as readable by that transaction. The initial value
    /// used for comparison is either that of the transaction’s read version or the value as
    /// modified by the transaction itself prior to the creation of the watch. If the value changes
    /// and then changes back to its initial value, the watch might not report the change.
    ///
    /// Until the transaction that created it has been committed, a watch will not report changes
    /// made by other transactions. In contrast, a watch will immediately report changes made by
    /// the transaction itself. Watches cannot be created if the transaction has set the
    /// READ_YOUR_WRITES_DISABLE transaction option, and an attempt to do so will return an
    /// watches_disabled error.
    ///
    /// If the transaction used to create a watch encounters an error during commit, then the watch
    /// will be set with that error. A transaction whose commit result is unknown will set all of
    /// its watches with the commit_unknown_result error. If an uncommitted transaction is reset or
    /// destroyed, then any watches it created will be set with the transaction_cancelled error.
    ///
    /// Returns an future representing an empty value that will be set once the watch has
    /// detected a change to the value at the specified key.
    ///
    /// By default, each database connection can have no more than 10,000 watches that have not yet
    /// reported a change. When this number is exceeded, an attempt to create a watch will return a
    /// too_many_watches error. This limit can be changed using the MAX_WATCHES database option.
    /// Because a watch outlives the transaction that creates it, any watch that is no longer
    /// needed should be cancelled by dropping its future.
    pub fn watch(&self, key: &[u8]) -> impl Future<Output = FdbResult<()>> + Send + Sync + Unpin {
        FdbFuture::new(unsafe {
            fdb_sys::fdb_transaction_watch(
                self.inner.as_ptr(),
                key.as_ptr(),
                fdb_len(key.len(), "key"),
            )
        })
    }

    /// Returns an FDBFuture which will be set to the approximate transaction size so far in the
    /// returned future, which is the summation of the estimated size of mutations, read conflict
    /// ranges, and write conflict ranges.
    ///
    /// This can be called multiple times before the transaction is committed.
    #[cfg(feature = "fdb-6_2")]
    pub fn get_approximate_size(
        &self,
    ) -> impl Future<Output = FdbResult<i64>> + Send + Sync + Unpin {
        FdbFuture::new(unsafe {
            fdb_sys::fdb_transaction_get_approximate_size(self.inner.as_ptr())
        })
    }

    /// Returns an FDBFuture which will be set to the versionstamp which was used by any
    /// versionstamp operations in this transaction.
    ///
    /// The future will be ready only after the successful completion of a call to `commit()` on
    /// this Transaction. Read-only transactions do not modify the database when committed and will
    /// result in the future completing with an error. Keep in mind that a transaction which reads
    /// keys and then sets them to their current values may be optimized to a read-only transaction.
    ///
    /// Most applications will not call this function.
    pub fn get_versionstamp(
        &self,
    ) -> impl Future<Output = FdbResult<FdbSlice>> + Send + Sync + Unpin {
        FdbFuture::new(unsafe { fdb_sys::fdb_transaction_get_versionstamp(self.inner.as_ptr()) })
    }

    /// The transaction obtains a snapshot read version automatically at the time of the first call
    /// to `get_*()` (including this one) and (unless causal consistency has been deliberately
    /// compromised by transaction options) is guaranteed to represent all transactions which were
    /// reported committed before that call.
    pub fn get_read_version(&self) -> impl Future<Output = FdbResult<i64>> + Send + Sync + Unpin {
        FdbFuture::new(unsafe { fdb_sys::fdb_transaction_get_read_version(self.inner.as_ptr()) })
    }

    /// Sets the snapshot read version used by a transaction.
    ///
    /// This is not needed in simple cases.
    /// If the given version is too old, subsequent reads will fail with error_code_past_version;
    /// if it is too new, subsequent reads may be delayed indefinitely and/or fail with
    /// error_code_future_version. If any of get_*() have been called on this transaction already,
    /// the result is undefined.
    pub fn set_read_version(&self, version: i64) {
        unsafe { fdb_sys::fdb_transaction_set_read_version(self.inner.as_ptr(), version) }
    }

    /// Reset transaction to its initial state.
    ///
    /// In order to protect against a race condition with cancel(), this call require a mutable
    /// access to the transaction.
    ///
    /// This is similar to dropping the transaction and creating a new one.
    ///
    /// It is not necessary to call `reset()` when handling an error with `on_error()` since the
    /// transaction has already been reset.
    pub fn reset(&mut self) {
        unsafe { fdb_sys::fdb_transaction_reset(self.inner.as_ptr()) }
    }

    /// Adds a conflict range to a transaction without performing the associated read or write.
    ///
    /// # Note
    ///
    /// Most applications will use the serializable isolation that transactions provide by default
    /// and will not need to manipulate conflict ranges.
    pub fn add_conflict_range(
        &self,
        begin: &[u8],
        end: &[u8],
        ty: options::ConflictRangeType,
    ) -> FdbResult<()> {
        error::eval(unsafe {
            fdb_sys::fdb_transaction_add_conflict_range(
                self.inner.as_ptr(),
                begin.as_ptr(),
                fdb_len(begin.len(), "begin"),
                end.as_ptr(),
                fdb_len(end.len(), "end"),
                ty.code(),
            )
        })
    }
}

impl Drop for Transaction {
    fn drop(&mut self) {
        unsafe {
            fdb_sys::fdb_transaction_destroy(self.inner.as_ptr());
        }
    }
}